In-Use Evaluation of Transit Buses Operated on Biodiesel Blends (B20) by St Louis Metro

Robb Barnitt

Mike Lammert, Robert McCormick
National Renewable Energy Laboratory (NREL)

NBB Biodiesel Conference
Orlando, FL
February 5, 2008
Agenda

• Project Objectives / Approach
• Implementation and usage
• On-road fuel economy
• Reliability
• Maintenance costs
• Fuel system durability
• Fuel analysis
• Lube oil analysis
• Conclusions
B20 Fleet Evaluation – Objectives

• Compare vehicles operating in the field on B20 and ULSD over 12 months:
 – Engine performance
 – Fuel economy
 – Vehicle maintenance cost
 – Fuel-induced variations in operation and maintenance
 – Lube oil performance

• Exhibit high degree of experimental control in vehicle selection and duty cycle
• Aid engine OEMs in exploring affects of B20 on engine durability
• Aid potential B20 users in understanding costs, benefits, and differences in operation

Fuel Economy Comparison

![Fuel Economy Comparison Graph](image)
B20 Fleet Evaluation – Approach

• 15 mechanically identical Metro transit buses:
 – 2002 Gillig Phantom
 – 2002 Cummins ISM (2004 cert with EGR)
 – 8 operated on B20, 7 on ULSD

• B20 and ULSD buses housed in different garages, but have been assigned to similar routes for duty cycle parity
 – 13.75 and 14.57 mph average speeds
 – Metro submits data electronically from their internal database
 – Fuel, Labor, Parts

• Fuel sample collection and analysis - partnership with HWRT (B20 supplier)

• Lube oil sampling and analysis program with Cummins
 – Oil sampled at ~2,000-mile intervals
Implementation and Usage

• Metro reports fairly seamless transition to biodiesel/ULSD B20 blend
 – UST fuel storage, B20 added to residual fuel until B0 \(\rightarrow\) B20
 – Instituted a 2000 mile fuel filter replacement schedule during transition (normally 6000 mile)
 – First experience with ULSD, phased in simultaneously with B20 (10/06)

• Based upon 12 months (10/06 – 9/07) of operational data
 – 394,116 miles driven by B20 buses (49,267 per bus average)
 – 90,983 gallons B20 consumed
3.58 mpg ULSD, 3.52 mpg B20 (-1.71%)
Difference not statistically significant
Road Calls

- Average Total MBRCs comparable
 - 2,375 ULSD, 2,627 B20
Engine, Fuel System Road Calls

- Average engine/fuel system MBRCs comparable
 - 6,924 ULSD, 8,211 B20
Maintenance Costs - Total

- June and August 2007 spikes driven by scheduled (brakes and radiator) maintenance, and other non-engine or fuel system repairs
Maintenance Costs - Total

12-month average maintenance costs:
- $0.566/mile ULSD, $0.568/mile B20
- Merged after 9 months
- Not a statistically significant difference
Maintenance Costs – Engine, Fuel System

- 12-month average engine and fuel system maintenance costs:
 - $0.053/mile ULSD, $0.072/mile B20
Fuel System Part Replacements

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Part Replaced</th>
<th>Oct-06</th>
<th>Nov-06</th>
<th>Dec-06</th>
<th>Jan-07</th>
<th>Feb-07</th>
<th>Mar-07</th>
<th>Apr-07</th>
<th>May-07</th>
<th>Jun-07</th>
<th>Jul-07</th>
<th>Aug-07</th>
<th>Sep-07</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSD</td>
<td>Fuel Filter</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Injector</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fuel Pump</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Sys Flush</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td>Fuel Filter</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Injector</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Pump</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Sys Flush</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Fuel filters (28 to 13)**
 - Weighted in first 2 months (2000 mile change interval to account for the solvent effect)
 - Feb-07 – likely due to unseasonably cold temps dropping below the cloud point of the fuel
 - Cloud Point stable
 - Fuel injector replacement higher with B20 than ULSD (15 to 3)
 - Evidence of operability issues led to injector replacement
Fuel Injector Replacements

- Failures on bus order group as early as 100k miles
- B20 buses had higher mileage at start of evaluation
- No pattern in B20 miles before failure
- No red flags with fuel quality (free/total glycerin)
- Cummins warranting injectors on bus order group

<table>
<thead>
<tr>
<th>Unit No</th>
<th>Fuel</th>
<th>Evaluation Start Mileage</th>
<th>B20 Miles Before failure</th>
<th>Injectors Replaced</th>
<th>Unit No</th>
<th>Fuel</th>
<th>Evaluation Start Mileage</th>
<th>ULSD Miles (Before Failure)</th>
<th>Injectors Replaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>3408</td>
<td>B20</td>
<td>127,467</td>
<td>55,355</td>
<td>2</td>
<td>3401</td>
<td>ULSD</td>
<td>110,990</td>
<td>45,072</td>
<td>1</td>
</tr>
<tr>
<td>3409</td>
<td>B20</td>
<td>125,630</td>
<td>47,270</td>
<td>1</td>
<td>3402</td>
<td>ULSD</td>
<td>98,042</td>
<td>45,786</td>
<td>0</td>
</tr>
<tr>
<td>3410</td>
<td>B20</td>
<td>127,825</td>
<td>3,865</td>
<td>1</td>
<td>3403</td>
<td>ULSD</td>
<td>113,496</td>
<td>44,019</td>
<td>0</td>
</tr>
<tr>
<td>3411</td>
<td>B20</td>
<td>127,825</td>
<td>18,635</td>
<td>2</td>
<td>3404</td>
<td>ULSD</td>
<td>87,056</td>
<td>19,101</td>
<td>1</td>
</tr>
<tr>
<td>3411</td>
<td>B20</td>
<td>123,374</td>
<td>10,364</td>
<td>1</td>
<td>3405</td>
<td>ULSD</td>
<td>110,583</td>
<td>14,128</td>
<td>1</td>
</tr>
<tr>
<td>3411</td>
<td>B20</td>
<td>123,374</td>
<td>12,332</td>
<td>1</td>
<td>3406</td>
<td>ULSD</td>
<td>103,929</td>
<td>48,874</td>
<td>0</td>
</tr>
<tr>
<td>3412</td>
<td>B20</td>
<td>131,582</td>
<td>13,180</td>
<td>1</td>
<td>3407</td>
<td>ULSD</td>
<td>129,510</td>
<td>48,851</td>
<td>0</td>
</tr>
<tr>
<td>3412</td>
<td>B20</td>
<td>131,582</td>
<td>33,403</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3413</td>
<td>B20</td>
<td>128,805</td>
<td>35,542</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3413</td>
<td>B20</td>
<td>128,805</td>
<td>40,444</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3414</td>
<td>B20</td>
<td>124,923</td>
<td>20,950</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3415</td>
<td>B20</td>
<td>129,530</td>
<td>38,204</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Miles: 127,392; Standard Deviation: 2,664

ULSD Miles: 107,658; Standard Deviation: 13,306
Fuel Analysis

• 15 B100, 30 B20 samples collected and analyzed
• Focused analytical approach led by NREL with assistance from SwRI
• Covered Feb-July 2007 (6 of 12 months)

B100 Results

• Free/total glycerin within spec
• Na+K, Ca+Mg, P within spec
• Flashpoint 14/15 met spec
• Bottom line - B100 met specs tested for
Fuel Analysis

B20 Results

• Cloud Points ranged -10C to -15C
 – No seasonal variation, within Metro spec

• B20 samples analyzed for blend content
 – The blend level of the samples was determined using ASTM D7371 with an accuracy of +/- 2%
 – 47% Nominal B20 (B17-23); 14/30 samples
Lube Oil Analysis

• 64 oil samples analyzed by Cummins
 – 833–6477 oil miles
 – 6000 miles change interval
• Despite apparent scatter, tight dataset for lube oil data

- Soot loading lower with B20 than ULSD, but both quite low
Lube Oil Analysis

- Viscosity as indicator of fuel dilution
 - Viscosity appears lower with B20, but B20 and ULSD samples “in-grade” throughout drain period

- TBN slightly lower with B20, but both B20 and ULSD show sufficient TBN retention at end of drain
Lube Oil Analysis

- Iron as indicator of wear
 - Slightly Lower with B20, especially with high mileage

- Lead as indicator of corrosion
 - Slightly Higher with B20, especially with high mileage
Conclusions

• No statistically significant difference between buses running on B20 and ULSD
 – On-road fuel economy
 – Reliability (Road Calls)
 – Total maintenance costs

• Difference in Fuel System and Engine maint. costs driven by fuel injector replacements
 – Skewed toward B20 buses; failure mode unknown

• No other observed fuel system durability issues
 – Biodiesel blend variability (<B20)
 – Lube oil data suggests no harm with B20 use
 – TBN decrease, fuel dilution increase (but still “in-grade”)
 – Some potential benefits (soot, wear metals)
Special Thanks

- US DOE – Kevin Stork
- NBB – Steve Howell, Tom Verry, Jill Hamilton
- Metro – Lyle Howard, Jill Coffin
- Cummins – Shawn Whitacre
- HWRT – Matt Schrimpf