11.0 Chip Level Modelling

Chip Level Model is a behavioral model of a block of logic in which signal path delays are accurately modeled without resorting to lower-level descriptions.
Figure 1. Chip Level Modelling (a) Chip Block Diagram, (b) Timing Diagram.

Modelling without delay

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY BUF_REG
 PORT(DI: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 DO: OUT STD_LOGIC_VECTOR(7 DOWNTO 0) BUS;
 STRB, DS1, DS2N : IN STD_LOGIC);
END BUF_REG;

ARCHITECTURE lev1 OF BUF_REF IS
 SIGNAL REG: STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
 PROCESS(STRB, DS1, DS2N)
 BEGIN
 IF STRB='1' and STRB'E'VENT THEN
 \[\text{\ldots}\]
REG <= DI;
IF DS1='1' and DS2N='0' THEN
 DO <= REG; ELSE
 DO <= "ZZZZZZZZ";
END IF;
ELSIF DS1'EVENT or DS2N'EVENT THEN
 IF DS1='1' and DS2N='0' THEN
 DO <= REG; ELSE
 DO <= "ZZZZZZZZ";
 END IF;
END IF;
END PROCESS;
END level1;

Modelling Including High Level Cause and Effect Delays

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY BUF_REG
 GENERIC(STRB_DEL, EN_DEL, ODEL: TIME);
 PORT(DI: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 DO: OUT STD_LOGIC(7 DOWNTO 0) BUS;
 STRB, DS1, DS2N : IN STD_LOGIC);
END BUF_REG;

ARCHITECTURE data_path OF BUF_REF IS
 SIGNAL REG : STD_LOGIC_VECTOR(7 DOWNTO);
 SIGNAL ENBLD: STD_LOGIC;
BEGIN
 A: PROCESS(STRB)
 BEGIN
 IF(STRB='1') THEN
 REG <= DI AFTER STRB_DEL;
 END IF;
 END PROCESS A;

 B: PROCESS(DS1, DS2N)
 BEGIN
 ENBLD <= DS1 and not DS2N AFTER EN_DEL;
 END PROCESS B;

 C: PROCESS(REG, ENBLD)
 BEGIN
 IF(ENBLD='1') THEN
 DO <= REG AFTER ODEL; ELSE
 DO <= "ZZZZZZZZ" AFTER ODEL;
 END IF;
 END PROCESS C;
END data_path;

ARCHITECTURE data_flow OF BUF_REG IS
 SIGNAL REG : STD_LOGIC_VECTOR(7 DOWNTO);
 SIGNAL ENBLD: STD_LOGIC;
BEGIN
Modeling Digital Signals

Single-bit signals

![Figure 2. Single-bit Signal Representation.](image)

Single-bit signals is represented by a sequence of 0, 1, X value.

N-tuple Signals
Figure 3. N-tuple Signal Representation.

Representation of n-tuple signal S:

Double lines indicate that S is stable, the stable value is written between the double lines. **Single line** at \(\frac{1}{2} \) indicates that S is unstable, (i.e. some bit of S is in transition). **Crossing double lines** indicate a sharp transition of signal S, i.e. all bits involved in the transition change sharply at the same time.

Signal Types and Events

There are two functional classes of digital signals:

- **Level signal** - is a signal that is used to represent information (either data or control information) by the value (or level) of the signal. A level signal carries information only when it is stable at 0 or 1.

- **Edge signal** – is a signal that is used to identify specific points in time. It does so by making sharp transitions, either from 0 to 1 or from 1 to 0.

There are five different types of events: two types for edge signal and three types for level signal.

The two edge signal events are:
S^\uparrow for positive transition
S^\downarrow for negative transition.

The three level signal events are:

$S<$ transition from unstable to stable.
$S>$ transition from stable to unstable.
$S\mid$ a sharp transition

Interval types

$[t_1, t_2]$ denotes the time interval between t_1 and t_2.

ex. $[X<, C^\uparrow]$ denotes the time interval between a transition of X to a stable value and a positive transition of C.

Figure 4. Setup, Hold, and Propagation Delay Intervals.

Setup interval – is an interval bounded on the left by the time a level signal word becomes stable and on the right by the time that an edge signal makes a transition. There are four possible combinations:

$[X<, C^\uparrow], [X<, C^\downarrow], [X\mid, C^\uparrow], [X\mid, C^\downarrow]$
It is understood that X remains stable throughout the setup interval.

Hold interval – is an interval that is bounded on left by a transition of an edge signal and on the right by a transition from stable to unstable of a level signal. There are four possible combinations:

\[C↑, X>, \; [C↓, X>, \; [C↑, X|, \; [C↓, X|] \]

Propagation delay – is an interval that is bounded on the left by an event that causes, or contributes to causing, the event that bounds the interval on the right.

The event \(C↓ \) causes Y to change value. There are two time specifications:

\(Tpdb \) – is the propagation delay to the beginning of the transition (some signals start changing). Example, \(\min Tpdb=\min [C↓, Y>] \). The specification is given by its minimum value, that is \(Y> \) is guaranteed not to occur until at least \((Tpdb)_{\min} \) after \(C↓ \).

\(Tpde \) – is the propagation delay to the end (or completion) of the transition (all signals stabilizes to new value). Example, \(\max Tpde=\max [C↓, Y<] \). The specification is given by its maximum value, that is \(Y< \) is guaranteed to occur before \((Tpde)_{\max} \).

Usually distinction between the beginning and end of the transition will not be made explicitly and one propagation delay \((Tpde) \) will be mentioned, typically it will be \(Tpd=(Tpde)_{\max} \).

For some devices the propagation delay of a single-bit output for transitions from high to low may be significantly different from that for transitions from low to high. Separate specification may then be given. When several such outputs are grouped together into a word, the worst of the individual specifications should be used. Example given the bit-wise specification:

\[
5 \leq T_{HL} \leq 10 \\
7 \leq T_{LH} \leq 15
\]

The bit-wise is combined to obtain the word specification:

\[
\min (5,7)= 5 \leq Tpd \leq 15 =\max (10, 15)
\]

Maximum propagation delays specification for outputs always have an associated load capacitance. If the specified load capacitance is exceeded, the specified propagation may be exceeded.

For Clock Edge Controlled Register, the following timing specifications are given:

Input requirements:
- \(Tstp \geq ________ \)
- \(Thld \geq ________ \)
- \(Tpwh \geq ________ \)
- \(Tpwl \geq ________ \)

Output guarantees
- \(Tpdb \geq ________ \)
- \(Tpde \leq ________ \)

where \(Tpwh, Tpwl \) are the clock pulse width high and low specifications.
For combinational circuits, there is no clock involved. The only relevant specification is the propagation delay. The event in this case is the change in input signal X that cause the change in the output signal Y.

Figure 5. Propagation Delays of Combinatorial Network.

Timing specifications:

\[T_{\text{pdb}}^{X \to Y} \geq \text{(usually not given)} \]
\[T_{\text{pde}}^{X \to Y} \leq \text{_______} \]

For Level Controlled Register – the difference between edge control and level control is reflected in the propagation delay specifications. For level control, propagation delay is measured both from the transition of C to its asserted level, and from X<. If X changes while C is asserted, the register will follow the change and load the new value. An edge-controlled register, by contrast, would load only at its transition edge.
Figure 6. Level Controlled Register Delays.

The timing specifications are:

input requirements:
\(T_{stip} \geq \) ________
\(Thld \geq \) ________

Output guarantees:
\(T_{C-Y}^{pde} \leq \) ________
\(T_{pde}^{X-Y} \leq \) ________
\(T_{pde}^{C-Y} \geq \) ________
\(T_{pde}^{X-Y} \geq \) ________
Figure 7. Ram Read Cycle Timing Diagram.

RAM Read Cycle (a) CSn=0, OE n=0, and WEn=1; (b) OEn=0, and WEn=1
Figure 8. Ram Write Cycle Timing Diagram.
DO = DBUS in output mode.
DI = DBUS in input mode.

tRC – Read cycle time = [ADD, ADD]=120 ns min.
tAA – Address access time = [ADD<, DO<]=120 ns max

tACS – Chip select access time = [CS↓, DO<]=120 ns max

tCLZ – Chip selection to output in low-Z = [CS↓, DO]=10 ns min (beginning of tACS)
tCHZ – Chip deselection to output in high-Z = [CS↑, DO>]=40 ns max

tOE – Output enable to output valid = [OE↓, DO<]=80 ns max
tOLZ – Output enable to output in low-Z = [OE↓, DO>]=10 ns min
tOH – Output hold from address change = [ADD, DO>]=10 ns min

tWC – Write cycle time = tRC=[ADD, ADD]=120 ns min

tCW – Chip selection to end of write = [CS↓, WE↑]=70 ns min

tAW – Address valid to end of write = [ADD, WE↑]=105 ns min

tAS – Address setup time = [ADD, WE↓]=0 ns min

tWP – Write pulse wide = [WE↓, WE↑]=70 ns min

tWR – Write recovery time = [WE↑, ADD]=0 ns min

tWHZ – Write enable to output in high-Z = [WE↓, DO>]=35 ns max

tDW – Data valid to end of write = [DI<, WE↑]=35 ns min

tDH – Data hold from end of write = [WE↑, DI]=0 ns min

tOW – Output active from end of write = [WE↑, DO<]=10 ns min

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY RAM IS
 GENERIC(
 CONSTANT tAA: TIME:=120 ns;
 CONSTANT tACS: TIME:=120 ns;
 CONSTANT tCLZ: TIME:=10 ns;
 CONSTANT tCHZ: TIME:=10 ns;
 CONSTANT tOH: TIME:=10 ns;
 CONSTANT tWC: TIME:=120 ns;
 CONSTANT tAW: TIME:=105 ns;
 CONSTANT tWP: TIME:=70 ns;
 CONSTANT tWHZ: TIME:=35 ns;
 CONSTANT tDW: TIME:=35 ns;
 CONSTANT tDH: TIME:=0 ns;
 CONSTANT tOW: TIME:=10 ns);
 PORT(CSn, WEn, OEEn: IN STD_LOGIC;
 ADD: IN BIT_VECTOR(7 DOWNTO 0);
 DBUS: INOUT STD_LOGIC_VECTOR(7 DOWNTO 0):="ZZZZZZZZ");
END RAM;

ARCHITECTURE beh OF RAM IS
 TYPE RAMarray IS ARRAY(0 TO 255) OF BIT_VECTOR(7 DOWNTO 0);
 SIGNAL RAMS: RAMarray;
BEGIN
RAM0: PROCESS(CSn, WEn, ADD)
BEGIN
 IF (rising_edge(WEn) AND CSn'DELAYED='0') OR (rising_edge(CSn) AND WEn'DELAYED='0') THEN
 RAMS(TO_INTEGER(ADD'DELAYED,0))<=TO_BITVECTOR(DBUS'DELAYED,0);
 DBUS <=TRANSPORT DBUS'DELAYED AFTER tOW; --read back after write
 END IF;

 IF falling_edge(WEn) AND CSn='0' THEN --enter write mode
 DBUS <= TRANSPORT "ZZZZZZZZ" AFTER tWHZ;
 END IF;

 IF CSn'EVENT AND OEn='0' THEN --read cycle Fig 7. (b)
 IF CSn='1' THEN -- RAM is deselected
 DBUS<= TRANSPORT "ZZZZZZZZ" AFTER tCHZ;
 ELSIF WEn='1' THEN
 DBUS <= "XXXXXXXX AFTER tCLZ;
 DBUS <= TRANSPORT To_StdLogicVector(RAMS(TO_INTEGER(ADD,0))) AFTER tACS;
 END IF;
 END IF;

END PROCESS RAM0 ;

CHK: PROCESS(WEn, ADD, CSn)
BEGIN
 IF CSn'DELAYED='0' AND NOW /=0 ns THEN --Fig 8. (b)
 IF ADD'EVENT THEN
 ASSERT (ADD'DELAYED'STABLE(tWC)) --tRC=tWC assumed
 REPORT "Address cycle time too short"
 SEVERITY WARNING;
 END IF;
 END IF;

 IF rising_edge(WEn) THEN
 ASSERT (ADD'DELAYED'STABLE(tAW))
 REPORT "Address not valid long enough to end of write"
 SEVERITY WARNING;
 ASSERT (WEn'DELAYED'STABLE(tWP))
 REPORT "Write pulse too short"
 SEVERITY WARNING;
 ASSERT (DBUS'DELAYED'STABLE(tDW))
 REPORT "Data setup time too short"
 SEVERITY WARNING;
 WAIT FOR tDH;
 ASSERT (DBUS'LAST_EVENT >= tDH)
 REPORT "Data hold time too short"
 SEVERITY WARNING;
 END IF;
END PROCESS CHK;
END beh;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY ram_test IS
END ram_test;

ARCHITECTURE test OF ram_test IS

COMPONENT RAM IS
PORT(CSn, WEn, OEn: IN STD_LOGIC;
ADD: IN BIT_VECTOR (7 DOWNTO 0);
DBUS: INOUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END COMPONENT;

FOR U0: RAM USE ENTITY WORK.RAM(beh);

SIGNAL CSn, WEn: STD_LOGIC:='1';
SIGNAL DBUS: STD_LOGIC_VECTOR (7 DOWNTO 0):="ZZZZZZZZ";
SIGNAL ADD: BIT_VECTOR (7 DOWNTO 0);

BEGIN
U0: RAM PORT MAP(CSn, WEn, '0', ADD, DBUS);
PROCESS
BEGIN
CSn <= '1', '0' AFTER 100 ns, '1' AFTER 300 ns, '0' AFTER 500ns, '1' AFTER 900 ns ;
WEn <= '1', '0' AFTER 120 ns, '1' AFTER 280 ns;
ADD <= "00000000", "00001000" AFTER 100 ns, "00011000" AFTER 300 ns,
"00001000" AFTER 500 ns, "00010000" AFTER 700 ns, "00011000" AFTER 900 ns;
DBUS <= "11100011" AFTER 240 ns;
END PROCESS;
END test;

<table>
<thead>
<tr>
<th>TIME (ns)</th>
<th>CSn</th>
<th>WEn</th>
<th>ADD</th>
<th>DI</th>
<th>DO</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>00000000</td>
<td></td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>1</td>
<td>00001000</td>
<td>Z</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>110*</td>
<td>0</td>
<td>1</td>
<td>00001000</td>
<td>XXXXXX</td>
<td>X</td>
<td>DBUS tOH=10ns later</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>0</td>
<td>00001000</td>
<td>XXXXXX</td>
<td></td>
<td>Switch to write</td>
</tr>
<tr>
<td>155*</td>
<td>0</td>
<td>0</td>
<td>00001000</td>
<td>Z</td>
<td>Z</td>
<td>DBUS tWHZ=35ns later</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
<td>0</td>
<td>00001000</td>
<td>11100011</td>
<td></td>
<td>Data to be written on DBUS</td>
</tr>
<tr>
<td>280</td>
<td>0</td>
<td>1</td>
<td>00001000</td>
<td>11100011</td>
<td></td>
<td>tDH=35<280-240, setup time satisfied</td>
</tr>
<tr>
<td>290*</td>
<td>0</td>
<td>1</td>
<td>00001000</td>
<td>11100011</td>
<td></td>
<td>Data written read back tOW=10ns later</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
<td>1</td>
<td>00011000</td>
<td>11100011</td>
<td></td>
<td>ADD change and Ram deselected</td>
</tr>
<tr>
<td>310*</td>
<td>1</td>
<td>1</td>
<td>00011000</td>
<td>Z</td>
<td>Z</td>
<td>DBUS tCHZ=10ns later</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>1</td>
<td>00001000</td>
<td></td>
<td></td>
<td>Ram selected, ADD set up to read data written earlier</td>
</tr>
<tr>
<td>Time (ns)</td>
<td>ADD</td>
<td>CSn</td>
<td>WEn</td>
<td>Do</td>
<td>Di</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>0-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1110011</td>
<td></td>
</tr>
<tr>
<td>100-200</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-300</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300-400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-500</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500-600</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600-700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700-800</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800-900</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900-1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000-1100</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100-1200</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200-1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>