
Lab 5: Structural Modeling Using Regular
Structure

The basic idea of iterative (or regular) circuits is to decompose a function into a set of simpler functions
that can cascaded together. The chain of cascaded circuits incrementally computes the desired function.
We will use 2-bit to represent 3 possible comparison results. 00(a=b), 01(a<b), 10(a>b), and 11(not use).
Denote (c_in1, c_in0) to be the comparison result of the previous high-order bit and denote (c_out1,c_out0)
be the current comparison result. The truth table of bit comparison is given in TABLE 1.

 a b
c_in1 c_out1
c_in0 c_out0

Figure 1. Bit_compare block diagram

TABLE 1. Bit Comparison truth Table
c_in1 c_in0 a b c_out1 c_ou0 comment
0 0 0 0 0 0 a=b
0 0 0 1 0 1 a<b
0 0 1 0 1 0 a>b
0 0 1 1 0 0 a=b
0 1 0 0 0 1 a<b
0 1 0 1 0 1 a<b
0 1 1 0 0 1 a<b
0 1 1 1 0 1 a<b
1 0 0 0 1 0 a>b
1 0 0 1 1 0 a>b
1 0 1 0 1 0 a>b
1 0 1 1 1 0 a>b
1 1 0 0 X X ?
1 1 0 1 X X ?
1 1 1 0 X X ?
1 1 1 1 X X ?

The above table can be summarize as follows:
1. If the previous comparison is equal (00), then the next comparison result is set according to the relative

values of a and b. That is, 00 if a=b; 01 if a<b; 10 if a>b.
2. If the previous is not equal (01 or 10), then next comparison result is to (01 or 10) irrespective of the

values a and b.
3. The previous comparison result of 11 is not being used. It represent a don’t care condition.

The simplified expression for the comparison output is given below:

c_out1 = a b’ c_in0’ + c_in1
c_out0 = a’ b c_in1’ + c_in0

Bit_Compare Logic Architecture
Library ieee;
Use ieee.std_logic_1164.all;
Use ieee.std_logic_arith.all;

ENTITY bit_compare IS
 PORT(a, b, c_in1, c_in0: IN BIT;
 c_out1, c_out0: OUT BIT));
END bit_compare;

Architecture logic of bit_conpare is
Begin
 c_out1<=(a AND NOT(b) AND NOT(c_in0)) OR c_in1;

c_out0<=(NOT (a)AND b AND NOT(c_in1)) OR c_in0;
end logic;

Library ieee;
Use ieee.std_logic_1164.all;
Use ieee.std_logic_arith.all;

ENTITY compare8 IS
 PORT (a, b : IN BIT_VECTOR(7 DOWNTO 0);
 c_in : IN BIT_VECTOR(1 DOWNRO 0);
 c_out : OUT BIT_VECTOR(1 DOWNTO 0));
END compare8;

Architecture 1: Abstract Behavior Modelling

ARCHITECTURE abstract_behavior of compare8 IS
BEGIN
 PROCESS(c_in,a, b)
 BEGIN
 IF(c_in=”00”) THEN
 IF(a=b) THEN c_out<=”00”;
 ELSIF(a<b) THEN c_out<=”01”;
 ELSIF(a>b) THEN c_out<=”10”;
 END IF;
 ELSIF(c_in=”01”) THEN c_out<=”01”;
 ELSIF(c_in=”10”) THEN c_out<=”10”;
 END IF;
 END PROCESS;
END abstract_behavior;

Architecture 2: Manual Structural Modelling

ARCHITECTURE man_struct OF compare8 IS
 COMPONENT bit_compare

 PORT(a, b, c_in1, c_in0: IN BIT;
 c_out1, c_out0: OUT BIT));
 END COMPONENT;

 SIGNAL c_int1, c_int0: BIT_VECTOR(7 DOWNTO 1);

For all: bit_compare use entity work.bit_compare(logic);
BEGIN
 C7: bit_compare PORT MAP(a(7), b(7), c_in(1), c_in(0), c_int1(7), c_int0(7));

C6: bit_compare PORT MAP(a(6), b(6), c_int1(7), c_int0(7), c_int1(6), c_int0(6));
C5: bit_compare PORT MAP(a(5), b(5), c_int1(6), c_int0(6), c_int1(5), c_int0(5));
C4: bit_compare PORT MAP(a(4), b(4), c_int1(5), c_int0(5), c_int1(4), c_int0(4));
C3: bit_compare PORT MAP(a(3), b(3), c_int1(4), c_int0(4), c_int1(3), c_int0(3));
C2: bit_compare PORT MAP(a(2), b(2), c_int1(3), c_int0(3), c_int1(2), c_int0(2));
C1: bit_compare PORT MAP(a(1), b(1), c_int1(2), c_int0(2), c_int1(1), c_int0(1));
C0: bit_compare PORT MAP(a(0), b(0), c_int1(1), c_int0(1), c_out(1), c_out(0));

END man_struct;

Architecture 3: Generated Structural Modelling

ARCHITECTURE gen_struct OF compare8 IS
 COMPONENT bit_compare
 PORT(a, b, c_in1, c_in0: IN BIT; c
 c_out1, c_out0: OUT BIT));
 END COMPONENT;
 SIGNAL c_int1, c_int0: BIT_VECTOR(7 DOWNTO 1);
--- FOR ALL: bit_compare USE ENTITY work.bit_compare(logic);
BEGIN
 CASCADE: --Iteration generate
 FOR i IN 7 DOWNTO 0 GENERATE
 INPUT_CASE:
 IF (i=7) GENERATE
 C7: bit_compare PORT MAP (a(i), b(i), c_in(1), c_in(0), c_int1(i), c_int0(i));
 END GENERATE INPUT_CASE;

 NORMAL_CASE:
 IF(i<=6 AND i>=1) GENERATE
 CX: bit_compare PORT MAP(a(i), b(i), c_int1(i+1), c_int0(i+1), c_int1(i), c_int0(i));
 END GENERATE NORMAL_CASE;

 OUTPUT_CASE:
 IF(I=0) GENERATE
 C0: bit_compare PORT MAP (a(I), b(I), c_int1(I+1), c_int0(I+1), c_out(1), c_out(0));
 END GENERATE OUTPUT CASE;
 END GENERATE CASCADE;
END gen_struct;
Assignments

1. Create a testbench to verify that each of the three architectures is working correctly.
2. Synthesis each of the three architectures.
3. Compare the total area of each of the synthesized architectures. The total area is proportional to

the circuit complexity.
4. Determine the longest path from input to output of each of the three architectures. This is

determined by tracing each of the signal paths from input to output, and counting the number of
gates traversed. The longest path is the path with the most gates traversed. This is proportional to
propagation delay.

	Figure 1. Bit_compare block diagram
	TABLE 1. Bit Comparison truth Table
	Bit_Compare Logic Architecture
	Architecture 1: Abstract Behavior Modelling
	Architecture 2: Manual Structural Modelling
	Architecture 3: Generated Structural Modelling
	Assignments

